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A B S T R A C T :  In this paper, the dynamic interaction between two collinear cracks in a piezoelectric 
material plate under anti-plane shear waves is investigated by using the non-local theory for imperme- 
able crack surface conditions. By using the Fourier transform, the problem can he solved with the help 
of two pairs of triple integral equations. These equations are solved using the Schmidt method. This 
method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found 
that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic 
elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based 
on the maximum dynamic stress hypothesis. 
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1 I N T R O D U C T I O N  

In the theoretical studies of crack problems for 

the piezoelectric materials, several different electric 

boundary conditions at the crack surfaces have been 

proposed by numerous researchers [l~m] . For the sake 

of analytical simplification, the assumption that the 

crack surfaces are impermeable to electric fields was 

adopted in Refs.[l~5, 12,13]. In their models, the 

assumption of the impermeable cracks refers to the 

fact that  the crack surfaces are free of surface charge 

and thus the electric displacement vanishes insides the 

crack. However, these solutions contain stress and 

electric displacement singularities. This is not reason- 

able according to the physical nature. To overcome 

the stress singularity in the classical elastic theory, 

the non-local theory was used to study the state of 

stress near the tip of a sharp line crack in an elastic 

plate subject to uniform tension, shear and anti-plane 

shear in Refs.[14~16]. The obtained solutions did not 

contain any stress singularity. 
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In the present paper, the scattering of harmonic 

elastic anti-plane shear waves by two collinear sym- 

metrical impermeable cracks in piezoelectric materi- 

als is investigated by using the non-local theory. This 

problem is different from the one in Ref.[17], which 

the static fracture problem was investigated for a per- 

meable crack in the piezoelectric materials by using 

the non-local theory. To overcome the mathematical 

difficulties, one has to accept some assumptions as 

in Refs. [i 8,19], where one-dimensional non-local ker- 

nel function is used instead of two-dimensional kernel 

function for the anti-plane dynamic problem to ob- 

tain the stress and electric displacement at the crack 

tips. These assumptions have been used in the previ- 

ous studies [2~ Certainly, the assumption should be 

further investigated against the realistic conditions. 

The Fourier transform is applied and a mixed bound- 

ary value problem is reduced to two pairs of triple 

integral equations. In solving the triple integral equa- 

tions, the crack surface displacement and electric po- 

tential are expanded in a series of Jacobi polynomials. 
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This process is quite different from that  adopted in 

Refs.[1~16]. As expected, the solution in this paper  

does not contain the stress and electric displacement 

singularities at the crack tip, thus clearly reflecting 

the physical nature of the problem. 

Substitution of Eq.(4) into Eqs.(2), (3) yields 

~ ( x , t )  = f v a ( l X ' -  Xl)akz(X', t )dV(X')  

k = x, v (5) 

2 B A S I C  E Q U A T I O N S  O F  N O N - L O C A L  

P I E Z O E L E C T R I C  M A T E R I A L S  

For the anti-plane shear problem, the basic equa- 

tions of linear, non-local piezoelectric materials,  with 
vanishing body  force are[ 13,14] 

07"xz OTy z 02W 
Ox + Oy POt 2 

OD~ ODy 
- - +  = 0  
Ox Oy 

(1) 

f 
D k ( X , t )  : J y  ~ ( I X '  - X I ) D ~ ( X ' , t ) d V ( X ' )  

k : x, y (6) 

where 

O'kz ~- C44W, k ~- e15q)' k D~ = elsw, k - en r  (7) 

The expressions (7) are the classical constitutive equa- 

tions. 

3 T H E  C R A C K  M O D E L  

~k~(x , t )  = 

4 ~ ( I x '  - 

L [c~4(IX' - Xl )w ,k (X ' ,  t )+ 

XI )d ) , k (X ' , t ) ldV(X '  ) k = x , y  (2) 

I t  is assumed tha t  there are two collinear sym- 
metric cracks of length 1 - b along the x-axis in the 

piezoelectric material  plate as shown in Fig.1. 2b is 

the distance between the two cracks. 

Dk(X,t)  = 

~ i l ( I X '  - 

~ [ 4 5 ( I X '  - Xi)w,k(X' , t ) -  

XI)r ) k = x , y  (3) 

where the only difference as compare d with the clas- 

sical elastic theory and the piezoelectric theory is in 
the stress and the electric displacement constitutive 

Eqs.(2), (3) in which the stress Wzk(X, t) and the elec- 

tric displacement D k ( X , t )  at a point X depends on 

w,k(X , t )  and r  at all points of the body. w 

and r are the mechanical displacement and electric 
potential. For homogeneous and isotropic piezoelec- 

tric materials there exist only three material  parame- 

ters, c~4(I x '  - XI)  , e i s ( IX '  - Xl) and e l l ( I X '  - Xl) 
which are functions of the distance IX' - X I. p is the 
density of the piezoelectric materials. The integrals 

in Eqs.(2), (3) are over the volume V of the body 

enclosed within a surface OV. As discussed in the 

papers [2~ , the form of c~44(IX ' - XI)  , 4 ~ ( I X '  - XI) 

and e~l(lx'- x D for which the dispersion curves of 

plane elastic waves coincide with those known in lat- 
t ice dynamics. Among several possible curves the fol- 

lowing has been found to be very useful 

(C~4, / I e15,Cll ) = (C44,e15,c11)o~(IX/- Xl)  (4) 

a ( I X '  - Xl)  is known as influence function, and is the 

functions of the distance IX' - X I. C44 , e l 5  , C l l  are the 
shear modulus, piezoelectric coefficient and dielectric 

parameter ,  respectively. 

y 

I! ri --b b-- 
1 

Fig.1 Cracks in the piezoelectric materials 

In this paper,  the harmonic anti-plane shear 

wave is vertically incident. Let a~ be the circular fre- 

quency of the incident wave. -7-o is a magnitude of 

the incident wave. In what follows, the time depen- 
dence of all field quantities assumed to be of the form 
e -iWt will be suppressed but understood. The solu- 

tion of two collinear symmetric cracks of arbi trary fi- 

nite length can easily be obtained by a simple change 

in the numerical values of the present problem. The 
piezoelectric boundary-value problem for anti-plane 

shear is considerably simplified if we consider only 
the out-of-plane displacement and the in-plane elec- 

tric fields. When the cracks are subjected to the har- 

monic elastic waves and a constant electric displace- 

ment Dy = - D o ,  as discussed by in Refs.[16, 22, 23], 

the boundary conditions on the crack faces at y = 0 

are (b is a dimensionless variable.) 

~-vz(x,O,t) = -To D~(x,O,t)  = - D o  
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b < Ixl < 1 (8) 

w ( x ,  0, t) = r  0, t) = 0 

I=1 < b Ixl > 1 (9) 

~(~, y, t) = r  y, t) = 0 

for (x 2 + y2)1/2 _+ oo (10) 

Substituting Eqs.(5) and (6)into Eq.(1), respec- 
tively, using Green-Gauss theorem, one obtains [16] 

f ~(I ~' - <, [: - yl)[c44V2w(xl, yl,t)-F 

elhV2~(x t, y', t)]dx' dy'- 

O+ 

c92w 
% ~ ( x ,  0 - ,  t ) ]dx '  = p a t  2 (11) 

Cl1~72~5(X/, y', t)]dx'dy I 

- ( f_~+ f f  )~(Ix'- .I,O)[D~(.,O+,t) - 

D~(x, 0-, t)]dx' = 0 (12) 

where V 2 = c92/0x 2 + 02/Oy 2 is the two dimensional 
Laplace operator. Under the applied anti-plane shear 
load on the unopened surfaces of the crack, the dis- 
placement field and the electric displacement have the 
following symmetry relations 

w ( x , - > t )  = -w(x ,y , t )  
(13) 

~(~,-v,t) = - r  

Using Eq.(13), we find that 

[ ~  (x, 0 +, t) - ~ ( ~ ,  0- ,  t)] = 0 
(14) 

[D~(x, 0 +, t) - D~(x, 0-, t)] = 0 

Hence, the line integrals in Eqs.( l l )  and (.12) vanish. 
By carrying out the Fourier transform of Eqs.(11) and 
(12) with respect to x ~, it can be shown that 

L ~ ~(1'1, ly' - ~1){ c44 d2~( y', t) 

r d2r y', t) els[ ~ s2~(s, y l , t )J}dy l=- f lw 2if) 
(15)  

Zhou ZG et al.: Scattering of Anti-plane Waves by Two Collinear Crack 561 

L~176 yD{el~[ d2~(s'v't) s2|162 

= o (lO) Sll  L dy 2 

Here a superposed bar indicates the Fourier trans- 
form, e.g. 

/7 f(s, y) = I(x, y)eiSXdx 

What  now remains to be done is to solve the integrod- 
ifferential Eqs.(15) and (16) for the function w and 
r It seems obvious that  a rigorous solution of such 
a problem encounters serious if not unsurmountable 
mathematical difficulties, and one has to resort to an 
approximate procedure. In the given problem, accord- 
ing to the assumptions as in Refs. [18,19], the non-local 
interaction in g direction was ignored. Therefore 

a(Isl, ly' - Yl) = (~o(s)5(y' - y) (17) 

From Eqs.(15) and (16), it can be shown that  

_ r rd2 ,~ ( , ,  y, t) t)]  OL0(8) ~C44 [ ~y2 82~)(s'Y' + 

Fd2~(s ,  y, t) el5 L ~j2- s2~(s,y,t)jf]l 
(is)  

e15 L dy 2 

ell[d2r 't) s2r = 0  (19) 

Because of symmetry, it suffices to consider the prob- 
lem in the first quadrant only. The solution of 
Eqs.(18) and (19) does not present difficulties, which 
can be written as follows, respectively (y _> 0) 

/7 w(x, y, t) = _2 A(s)e -'~y cos(xs)ds fr 

r  y, t) - e l~ w ( x ,  y, t) = (20)  
Cll 

- B(s)e -*y cos(xs)ds 

where V2 = ~2 _ ~ / e ~ 0 ( . ) ,  c 2 = ~ / p ,  p = q 4  + r  
s 

A(s) and B(s) are to be determined from the bound- 
ary conditions. According to the boundary conditions 
(8) and (9), one obtains 

2 L ~176 ~o(s)TA(s)cos(sx)ds = 1 ( + elhDo 
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b < I~1 < i 

2 fo ~ A(s) cos(sx)ds 0 
7( 

I~l < b I~l > 1 

(21) 

(22) 

makes the numerical solution of such equations quite 
difficult. Here the Schmidt method [25] can be used 
to solve the triple integrals in Eqs.(21)~(24). The 
displacement w and the electric potential r can be 
represented by the following series 

and 

2/? 
7 ao(s)sB(s) cos(sx)ds -- Do 

s 

b <__ Ix I <_ i (23) 

2f0  -~ B(s) cos(sx)ds = 0 

Ixl < b Ixl > 1 (24) 

Equations (21)~(24) are the triple integral equations 
of this problem. 

4 S O L U T I O N  OF T H E  T R I P L E  I N T E G R A L  
E Q U A T I O N S  

The non-local function a will depend on a char- 
acteristic length ratio aft, where a is an internal char- 
acteristic length (e.g., lattice parameter, granular dis- 
tance. In this paper, a represents the lattice param- 
eter.) and l is an external characteristic length (e.g., 
crack length, wave-length. In this paper, 1 represents 
the crack length 1 - b.). By matching the dispersion 
curves of plane waves with those of atomic lattice dy- 
namics (or experiments), we can determine the non- 
local modulus function a for given material. Here, 
the only difference between the classical and non-local 
equations is in the introduction of the function a0(s). 
As discussed in Refs.[14~16, 18,19, 24], we have 

ao = Xo exp(-(/3/a)2( x' - x) 2) Xo = ~ / a v ~  (25) 

where 3 is a constant (here ~ = e0v~/(1  - b), e0 is 
a constant appropriate to each materiaL), a is the 
lattice parameter. So one obtains 

~o(s) = exp(-(sa)2/(2fl)  2) (26) 

with ~0(s) = 1 for the limit a -+ 0 (We consider the 
crystal as a lattice of regularly space sites with lab 
tice parameter a), so that  Eqs.(21)~(24) reduce to 
the well-known triple integral equations of the classi- 
cal theory. The triple integral equations for the same 
problem in the classical fracture theory can be trans- 
formed into a Fredholm integral equation of the sec- 
ond kind. However, as discussed in Ref.[17], the triple 
integral Eqs.(21)~(24) cannot be transformed into a 
Fredholm integral equation of the second kind. This 

o o  

w(x,O,t) = E a~P(1/2'!/2)( x Z (l + b)/2~" 
~=0 (i - b)/2 J 

(1 - (x_(_( 1- (1_ ~-)/-~-)2 + b)/2)2 ) 1/2 

for b < x < l  y = 0  (27) 

~ ( x , O , t )  = o 

for x > l  x < b  y = 0  (28) 

(l_+b)/2 4 
~ = 0 - - \  ( l - b ) / 2  ] 

(1 (x - (1 + b)/2) 2) 1/~ 

for b < x < l  y = 0  (29) 

r 0, t) = 0 

for x >  1 x < b  y = 0  (30) 

where an and b~ are unknown coefficients to be de- 
termined and P(1/2'l/2)(x) is a Jacobi polynomial [26]. 
The Fourier transforms of Eqs.(27) and (29) are [27] 

A(s) = @(s,O,t) = E a n B n G n ( S ) s J n + l  s 
n=0 

(31) 
o o  ( e15) 

B ( 8 )  = q~(s,0, t) - e15@(8 0, t) = E b n -  - - a n  " 
~11 \ ' s n=O 

(32) 

n! 

a ~ ( s )  = 

( s l + b ~  
( ' 1 ) '~ /2cos \  2 / 

(-1)(~+1)/2 sin (~ 1 + b~ 
\ 2 / 

where F(x) and J~(x) 
functions, respectively. 

n = 0 ,2 ,4 ,6 , . . .  

n = 1, 3, 5 ,7 , . . .  
(33) 

are the Gamma and Bessel 
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Substituting Eqs.(31) and (32) into Eqs. 
(21)N(24), respectively, Eqs.(21) and (24) can be au- 
tomatically satisfied, respectively. Then the remain- 
ing Eqs.(21) and (23) reduce, respectively, to 

~-~anBn fo~ (S~--~) " 
n = O  

7r 
cos(sx)ds = ~-fiTO(1 + A) (34) 

) / /  e15 b n - - - a n  B~ 6o(s)Gn(s)" 
n = O  ell 

2Sll 

e15Do 
where A - For large  s, the integrands 

CllT0 
of Eqs.(34) and (35) almost decrease exponentially. 
Hence, they can be evaluated numerically. Equations 
(34) and (35) can now be solved for the coefficients 
an and bn by the Schmidt method [25] as can be seen 

in the Ref.[13]. 

5 N U M E R I C A L  C A L C U L A T I O N S  A N D  

D I S C U S S I O N  

From Refs.[13, 28~30], it can be seen that the 
Schmidt method is satisfactory if the first ten terms 

in the infinite series in Eqs.(34) and (35) are retained. 
Although we can determine the entire perturbation 
stress field and the perturbat ion electric displacement 
field from coefficients an and bn, it is important  in 
fracture mechanics to determine the dynamic stress 
~'yz and the electric displacement Dy in the vicinity 
of the crack tips. "ryz and Dy along the crack line can 

be expressed, respectively, as 

= - -  #anBn 6o(S �9 
7F 8 

n = O  

Jn+l ( 8 ~  -~) cos(xs)ds q-e15 ( b n -  e15 , ,~  

fo~176 (~0 (8)Jnq_l ( 8 ~ ) c o s ( x s ) d s ]  (36) 

oo 
Dy(x,O,t) = --2 E(e15an - Cllbn)J~ n" 

7V 
n = O  

~176 (37) 0 1 - b  

For a = 0 at x = b, 1, we have the classical stress and 
electric displacement singularities. However, so long 
as a ~ O, the semi-infinite integration and the series 

in Eqs.(36) and (37) a re  convergent for any variable x. 
Eqs.(36) and (37) give a finite stress all along y = 0, 
so there is no stress and electric displacement singu- 

larities at the crack tips. At b < x < 1, Tyz/TO and 
Dy/Do are very close to unity, and for x > 1, Tyz/'rO 
and Dy/Do take finite values diminishing from a finite 
value at x = 1 to zero at x = oo. In all computations, 
the material constants are not considered, the param- 
eters include the incident wave frequency, the wave 
velocity, the crack length and the lattice parameter  
in this paper. This is because the stress fields do not 
depend on the material constants. The results are 
plotted in Figs.2~9. The following observations can 
be made: 

(1) The maximum perturbat ion stress and the per: 
turbation electric displacement do not occur at 
the crack tip, but slightly away from it. This 

phenomenon has been thoroughly substantiated in 
Ref.[31]. The maximum stress and the maximum 

electric displacement are finite. The distance be- 
tween the crack tip and the maximum stress point 
is very small, and it depends on the crack length 
and the lattice parameter. Unlike the classical 
piezoelectric theory solution, it is found that  no 
stress and electric displacement singularities are 
present at the crack tip, and also the present re- 
sults agree with the classical ones at places far 
away from the crack tip. 

(2) The dynamic stress and electric displacement at 
the crack tip become infinite as the atomic dis- 
tance a --+ 0. This is the classical continuum limit 
of square root singularity. For the classical local 
theory, one can only obtain the stress and electric 
displacement intensity factors for the variation of 
0d/e. 

(3) For the a/fl = constant, viz., the atomic distance 
does not change, the values of the stress and elec- 
tric displacements at the crack tip increase with 
increasing the crack length. From this fact, it 
can be shown that  the piezoelectric materials with 
smaller cracks are more resistant to fracture than 
those with larger cracks. 

(4) The significance of this result is that  the fracture 
criteria are unified at bo th  the macroscopic and 
microscopic scales, viz., it may solve the problem 
of any scale cracks. 

(5) The left tip's stress and electric displacement are 
greater than the right tip's ones for the right crack. 
The stress and the electric displacement on t h e  
crack line become lower with increasing the dis- 
tance between two cracks. 
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(6) T h e  dimensionless  p e r t u r b a t i o n  s t ress  is found to  

be  i n d e p e n d e n t  of the  electr ic  loads  and  the  ma te -  

r im pa rame te r s .  I t  j u s t  depends  on the  length  of 

the  crack,  the  la t t i ce  p a r a m e t e r ,  the  c i rcular  fre- 

quency  of the  inc ident  wave and  the  wave velocity. 

However,  the  p e r t u r b a t i o n  electr ic  field is found 

to b e  i ndependen t  of the  m a t e r i a l  p a r a m e t e r s  and  

the  c i rcular  f requency of the  incident  wave and  the  

wave velocity. I t  j u s t  depends  on the  l eng th  of the  

crack,  t he  la t t i ce  p a r a m e t e r ,  which can  be seen 

f rom Eqs.(34) and  (35). 

(7) T h e  dynamic  p e r t u r b a t i o n  stress and  the  pe r t u r -  

b a t i o n  electr ic  d i sp lacement  at  the  crack t ips  t end  

to  increase  wi th  the  frequency, to  reach  a peak  

and  t hen  to  decrease  in magn i tude :  However,  the  

d y n a m i c  p e r t u r b a t i o n  s t ress  and  the  p e r t u r b a t i o n  

e lect r ic  d i sp lacement  at  t he  crack t ips  t end  to  de- 

crease w i th  increas ing a/2fl. 

16 
\ Tyz(1, o, t)/-~o 

12 

i 

0.0 0.3 0.6 0.9 
b 

Fig.4 The variation with b of the stress 
at the  crack tips for w = 0, a/2t3 = 
0.001, ~ = 0.2 

18 

15 

~'~ 12 

Fig.2 

~ ( b ,  o, t)/~-o 

0.0 0.7 1.4 2.1 

w/c 

The variation with w/c of the stress 
at the crack tips for a/2/3 = 0.001, 
b = 0.1, ), = 0.2 

N 

10 

8 

6 

4 

2 

~ l, 0, t)/To 

0.000 0.004 0.008 
a/29 

Fig.5 The variation with a/2fl of the 
stress at the crack tips for w = 1.0, 
b = 0 . 5 ,  A = 0 . 2  

Fig.3 

16 

12 

(1,  0,  t)lTo 

0.000 0.004 0.008 
a/2~ 

The variation with a/2~ of the 
stress at the crack tips for a~ = 0, 
b = 0.1, .~ = 0.2 

30 

24 
D~(1, O, Q/Do 

18 

12 

6 

0.000 
i i 

0.004 0.008 

a/2~ 

Fig.6 The electric displacement at the 
crack tips versus a/2fl for w = 0, 
b = 0.1, ), = O.2 
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Fig.7 The electric displacement at the 
crack tips versus b for w = 0, 
a/2~ = 0.001, A = 0.2 
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X 

Fig.8 The variation of the stress on the 
crack line for w = 1.0, b = 0.1, 
a/2~ = o.oo1, ~, = o.2 
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Fig.9 The variation of the electric dis- 
placement on crack line for b = 0.1, 

a/2/3 = 0.001, A = 0.2 
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